Towards an Electronic Interferometer based on Spin-Resolved Quantum Hall Edge States
نویسندگان
چکیده
Spin resolved edge states are ideal candidates for the implementation of dual-rail quantum computation architectures by encoding the qubit in the spin degree of freedom of the co-propagating edge states. An important element for the realization of such architectures is a coherent beam splitter that controllably mixes the two co-propagating spin-resolved edge channels. Coupling of the spin resolved edge states is demonstrated recently by spin-flip scattering event that is induced by in-plane spatially-dependent periodic magnetic field of the nano-magnet array placed at the boundary of the mesa. In this paper we discuss the nanofabrication and our preliminary transport analysis of an electronic interferometer device made of two nano-magnetic arrays placed in close proximity. The impact of temperature in the coherent properties of the devices is addressed.
منابع مشابه
Mach-Zehnder interferometry using spin- and valley-polarized quantum Hall edge states in graphene
Confined to a two-dimensional plane, electrons in a strong magnetic field travel along the edge in one-dimensional quantum Hall channels that are protected against backscattering. These channels can be used as solid-state analogs of monochromatic beams of light, providing a unique platform for studying electron interference. Electron interferometry is regarded as one of the most promising route...
متن کاملQuantum spin Hall effect in graphene.
We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of matter is gapped in the bulk and supp...
متن کاملTopological phase transition and quantum spin Hall edge states of antimony few layers
While two-dimensional (2D) topological insulators (TI's) initiated the field of topological materials, only very few materials were discovered to date and the direct access to their quantum spin Hall edge states has been challenging due to material issues. Here, we introduce a new 2D TI material, Sb few layer films. Electronic structures of ultrathin Sb islands grown on Bi2Te2Se are investigate...
متن کاملControlled coupling of spin-resolved quantum Hall edge states.
We introduce and experimentally demonstrate a new method that allows us to controllably couple copropagating spin-resolved edge states of a two-dimensional electron gas (2DEG) in the integer quantum Hall regime. The scheme exploits a spatially periodic in-plane magnetic field that is created by an array of Cobalt nanomagnets placed at the boundary of the 2DEG. A maximum charge or spin transfer ...
متن کاملHelical edge states and fractional quantum Hall effect in a graphene electron-hole bilayer.
Helical 1D electronic systems are a promising route towards realizing circuits of topological quantum states that exhibit non-Abelian statistics. Here, we demonstrate a versatile platform to realize 1D systems made by combining quantum Hall (QH) edge states of opposite chiralities in a graphene electron-hole bilayer at moderate magnetic fields. Using this approach, we engineer helical 1D edge c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012